Achord: A Variant of the Chord Lookup Service for Use in
Censorship Resistant Peer—to—Peer Publishing Systems

Steven Hazel and Brandon Wiley
sah@thalassocracy.org, brandon@blanu.net

Abstract

Any peer—to—peer publishing system must provide
a mechanism for efficiently locating published
documents. For censorship resistant systems, it is
particularly important that the lookup mechanism be
difficult to disable or abuse. Chord [1]is a
promising distributed lookup mechanism, because
analysis has provided certain useful guarantees
about the speed and correctness of Chord’s
operation. We examine the suitability of Chord for
building censorship resistant peer—to—peer
publishing systems , and suggest Achord, a variant
of the Chord mechanism which takes into account
the additional requirements imposed by the goal of
censorship resistance.

1. Introduction

The provable performance and correctness of
Chord make it an attractive option for distributed
lookup. It is guaranteed that data will be located if it
exists in the network, and that the number of
messages required to perform a given lookup scales
more—or—less logarithmically with the size of the
network. In a fully optimized N—node network the
number of messages involved in a Chord lookup will
be limited to O(log N). As nodes join and leave the
system, the network can be returned to full
optimization with a number of messages that will
with high probability be no greater than O(log? N).
These guarantees are considerably stronger than
those provided by the lookup mechanisms employed
in Freenet [2] and FreeHaven [3], where data that
exists in the network is not guaranteed to be found,
and the number of messages involved in a successful
lookup is unknown. It would therefore be desirable
to implement Chord such that it could be used in a
censorship resistant peer—to—peer publishing system.

Providing censorship resistance requires careful
design of every component in the architecture of a
peer—to—peer system. Where other applications might
allow for a broad choice of suitable components,
censorship resistance requires that each component
function in a way that is compatible with the strategy
by which the system aims to provide censorship
resistance. In order for a lookup mechanism to be
suitable for use in a censorship resistant peer—to—peer
publishing system, it must locate data in a scalable
manner while allowing the system to maintain the
following properties:

Property 1 It must be possible to insert data into
the system without revealing the identity of the
inserter, so that attacking those who insert
information will not be a viable means of censoring
that information.

Property 2 It must be possible to retrieve data
Jfrom the system without revealing the identity of the
recipient, so that attacking those who request
information will not be a viable means of censoring
that information.

Property 3 It must be difficult to introduce a new
node to the network such that it will become
responsible for a particular document, so that
voluntarily assuming responsibility for a document
and then deleting it will not be a practically viable
means of censoring arbitrary documents.

Property 4 It must be difficult to identify the
node which is responsible for storing a given
document, so that identifying attacking individual
container nodes will not be a practically viable
means of censoring arbitrary documents.



The last of these properties is particularly at
odds with Chord’s basic operation. While most
lookup services map keys to values, Chord instead
maps from keys to the nodes which are responsible
for storing the associated values. The
implementations of Chord suggested thus far have
specified that the identity of that node be returned to
the requester. This functionality has also been used
extensively in the network stabilization procedure
which occurs when a node joins or leaves a Chord
network. Thus, because looking up the node
responsible for a particular document is the basic
operation Chord provides, Chord does not allow for
the final property listed above to be maintained.
This is only a problem with a few incidental
specifics of Chord’s design, however, and not a
fundamental problem with the Chord lookup
scheme.

This paper presents Achord, a service that
provides Chord-like lookup of values, rather than
nodes, in a way which does allow for the above
properties to be maintained, without compromising
any of the guarantees that can be made about the
correctness and performance of Chord.

While there is nothing about Chord (or Achord)
which would prevent some external mechanism
from providing Properties 1 and 2, Achord provides
some degree of requester and inserter anonymity
directly, as part of its normal mode of operation.

2. Design

Chord nodes are assigned an m—bit identity
(based, for example, on the SHA—1 hash of the
node’s IP), and keys are m—bit quantities (obtained,
e.g., from the SHA-1 hash of a text string). A node
is responsible for a key if its identity the nearest
successor of that key. The fundamental strategy for
providing Property 3 in Achord, as in Freenet, is to
prevent nodes from choosing their own identities.
Achord requires that a node’s ID be chosen in a
consistent way based on a link—layer—assigned
identity which can be verified by the link layer
during communication with that node. For Internet
applications, the node’s IP address is a perfect
candidate, and the rest of this paper assumes that a

node’s ID will be based on the SHA—1 hash of its IP.

(Chord also has a concept of "virtual nodes", which
Achord does not alter, and which we do not discuss
in depth here. If virtual nodes are used in an Achord

implementation, we assume that they are numbered,
and that their IDs are based on the SHA—1 hash of
the concatenation of the node’s IP and the virtual
node number.)

In an N—-node Chord network, each node
maintains a finger table of only O(log N) other
nodes. In the course of the operation of Chord,
however, each node has access to considerably more
information about the structure of the network. In
pursuit of Property 4, the design of Achord attempts
to limit each node’s knowledge of the network as
closely as possible to the data in its finger table.

The fundamental operation in Chord is
find_successor. The node which has an ID that is the
nearest successor of a key is responsible for storage
of the value associated with that key, so
find_successor is used to perform key lookups in
Chord. When a new node joins the Chord network,
it uses find_successor to determine its place in the
network and initialize its finger table, and as the
network operates, each node works to optimize the
network routing, using find_successor to get
information about surrounding. There are two ways
in which a node might compute find_successor for a
given key k [4]:

1. The iterative method, in which the node
requesting the lookup contacts nodes in the network
directly, making queries about their routing tables,
until it has identified the node which is the successor
of k.

2. The recursive method, in which the node
requesting the computation contacts only the node in
its own finger table which most closely precedes k,
and that node performs the same operation for its
own finger table, and so on, passing the query
through the network until the successor node is
contacted.

Because find_successor allows a node to
determine which keys another node is responsible
for, Achord limits its use strictly. The results of
find_successor are only returned under very specific
circumstances. Most significantly, Achord maps
keys to values, rather than to nodes —— a key lookup
never returns the result of find_successor to the
requester.

Achord key lookups are performed using an



operation, connect_to_successor, which works
almost identically to the recursive find_successor.
With connect_to_successor, however, the results of
find_successor are never returned: when the
successor node is contacted during a request, the
value, rather than the node ID, is "tunneled" back
along the recursive search path to the originator of
the request. Similarly, to insert a value into the
network, a node performs the connect_to_successor
operation to establish a tunneled connection to the
node which would be responsible for the given key,
and sends the value along that connection path. As
in Crowds [5], tunneling provides document
requesters and inserters some measure of anonymity
(and Achord provides Properties 1 and 2), because a
node which receives a given request has no way to
determine whether the immediate requester is
proxying the request from a node even further away
from the key. Similarly, the identity of the node
responsible for storing a given key is protected. In
this respect, Achord is similar to the lookup
mechanism provided by Freenet, which also protects
storage node identities by providing tunneled
connections.

Beyond merely protecting node identities during
requests and inserts, Achord must also maintain the
state of the network while limiting the amount of
information each node is able to gain about the
network, and preventing each node from making
directed inquiries about which nodes are responsible
for which keys. Therefore, we have made
considerable modifications to the stabilization
procedure by which Chord optimizes a network as
nodes simultaneously join and leave.

2.1 Stabilization Revised

In order for a Chord network to maintain fast
and reliable lookups, certain properties of the
network must be maintained as nodes join and leave
the network. Nodes must have their successor and
predecessor fields set properly and when possible
their finger tables should contain the closest
matching values for each slot.

In Chord, when a new node 7 joins the network,
it must know the IP of a node which can introduce it
to the network. It calls find_successor on that node
to find its own successor. It then starts with its
successor’s .predecessor field and walks back in
order to find its own predecessor. It periodically

checks its predecessor and successors to make sure
they are current and also updates its finger tables so
that they remain current and optimal.

In order for Achord to restrict each node’s
knowledge of the network, access to other nodes’
successor and predecessor fields and finger tables
must be restricted to only valid, non—hostile uses.
Fortunately, this information will only be accessed
by a well-behaved node in certain verifiable
contexts.

The first context in which a node may obtain a
new IP address from another node is when calling
find_successor to find its own successor upon first
joining the network. However, in this case, a node
with ID n will always call find_successor(n). This
call will always be benign because every node is
allowed, and in fact expected, to know its own
successor. Since the ID of a node is based on its IP,
it is verifiable by the node on which
find_successor(n) is being called that n is calling
find_successor on its own ID. It is important for the
restrictions which will be imposed on accessing a
node’s predecessor field that one of the side effects
of find_successor be that n’.find_successor(n) will
set n’.predecessor to n if n is a better match than the
current value for the predecessor field on n’. In
Chord these two steps are considered to be
orthogonal. However, it is important in Achord that
after a node n joins the network (via successive calls
to find_successor) there is some node »n’ such that
n’.predecessor is n.

Rule 1 Only the node with ID n is allowed to
call find_successor(n).

Chord presents two implementations of
find_successor, iterative and recursive. However,
because of this limitation being placed on when it is
proper to call find_successor, only the iterative
version is possible. A node participating in the
calculation of the recursive version would only be
able to retrieve the successor for itself, not for the
requesting node.

Rule 2 Only the iterative version of
find_successor can be used.

It is significant to note that since Chord provides
that find_successor can be computed in no more



than O(log N) messages, only at most O(log N)
nodes need learn of the existence (and ID) of # in
order for it to join the network.

Theorem 1 Only O(log N) nodes need to find out
about the existence of a node in order for it to join
the network.

The only context in which a node will access
another node’s predecessor field is during its
periodic stabilization routine. In this case it will
always been accessing n’.predecessor where n’ is
n.successor. Since n’ does not know all of the IPs in
the network, it is not possible for n’ to determine if
it is the proper successor for n. However, there is
still a verifiable invariant in this case. In order for n
to think that it’s successor is n’, n’ must have
considered 7 to be its successor at some point in the
past. This is true because when a new node joins the
network it sets n.successor=n’.find_successor(n).
This call both sets n.successor=n’ and
n’.predecessor=n. The only predecessor field that n
has the right to access is the one on n’ until
n.successor changes. Therefore, n’ can determine if
the call to its predecessor field is valid by
maintaining a list of old values for predecessor and
seeing if n is in that list. Additionally, access of the
predecessor field will always return n until n has a
new successor. When an access to n’.predecessor
yields something other than n, say n*’, n’ can
remove n from its list of nodes allowed to access the
predecessor field, as all valid future accesses from n
of a predecessor field should be on n*’ instead.
Using this restriction, the predecessor field can only
be used to find one IP at a time and the rate at which
the predecessor field changes is set by the rate at
which nodes are joining and leaving the network,
not by the attacker.

Rule 3 A node n is only allowed to access the
predecessor field of another node n’ if n was
previously a value of n’ .predecessor, and n has not
accessed n’ .predecessor since n’.predecessor’s value
changed from n.

The final context in which a node validly needs
to discover the IPs of other nodes is when updating
its finger tables. In Chord this is accomplished by
taking a random node from the current finger table

and then walking the ring from that node until either
a better node is found for that position, or else it is
determined that there is no better node in the
vicinity. This method is entirely replaced in Achord
by another method of obtaining better finger table
entries. In Achord, updating the finger table is
accomplished by choosing a random node, n’, from
the current finger table and calling
n’.find_best_match(i), where i is the index into the
finger table for that node. There is no way for n’ to
know if it was actually the i" node in n’s finger
table. However, it is not necessary to do so in order
to limit the abuse of the finger table update method.
The node n” knows the IP address of n and can thus
determine the ID of n as well as what the ideal IDs
are for each slot in n’s finger table. The
find_best_match function is used iteratively just like
find_successor. The node n’ will look at its finger
table in the i position and return whichever is the
better match for n’s i position, either the node in
that slot or n’ itself.

Rule 4 Finger tables are updated using the
find_best_match function, which only returns a new
IP if the new IP is a closer match to one of the slots
inn’s finger table slot than n’.

The benefit of this method of updating the
finger table is that it limits the number of IPs which
can be harvested by any one node. Since new IPs
are only returned if they are closer to the node’s
ideal set of IPs, repeated querying of all known
nodes in a static network will quickly result in a
static set of IPs being returned. Due to the nature of
Chord routing it is only possible to harvest O(log N)
IPs for each entry in the finger table. So, in a static
network, at most O(k log N) IPs can be harvested by
any one node, where £ is the size of the finger table.
If the network is dynamic then all of the nodes will
find out about new nodes over time, as is necessary
for the network to properly function. The rate at
which new IPs can be harvested in a dynamic
network depends on the rate at which nodes are
joining and leaving the network and is not under the
control of the attacker.

Theorem 2 In a static network, a single node
can harvest at most O(k log N) IPs.



3. Future Work

There are a number of potential attacks on
Achord that are worth exploring.

It would be possible to attack an Achord
network by using a large number of IPs to get more
chances to have a node which is responsible for a
given key. It’s not entirely clear how many IPs an
attacker would have to command in a network of a
particular size in order to become responsible for a
given set of keys.

Achord’s attempt to disguise the identities of
inserters and requesters might not be as effective as
Freenet’s. In Achord, a node receiving a request
will have some idea of the distance between the key
and the requester’s node ID, and perhaps this might
be used to estimate the probability that the requester
in fact originated the request.

Despite the precautions taken in section 2.1,
nodes have some limited ability to learn about other
nodes in the network as it stabilizes. It is unclear
how much a node can learn about a network in a
given certain amounts of time and network traffic. It
might be fruitful to explore various schemes for
preventing nodes from learning about the network
too quickly, such as tying stabilization information
to data requests, or having nodes push stabilization
data out to other nodes at regular intervals, rather
than returning it upon request.

4. Conclusion

Achord provides a lookup mechanism that is
equivalent to Chord in performance and correctness,
but which is suitable for use in censorship resistant
peer—to—peer publishing systems. Its basic tactics for
providing anonymity and limiting each node’s
knowledge of the network are similar to those of
Freenet. In most areas, stronger claims can be made
about Achord’s performance characteristics than can
be made about Freenet’s. Further analysis is needed
to determine how secure Achord is against attack.

Acknowledgements

We would like to thank Roger Dingledine for
bringing Chord to our attention, and for his valuable
comments and analysis.

S. References

[1] Ion Stoica, Robert Morris, David Karger, M.
Frans Kaashoek, and Hari Balakrishnan. Chord: A
Scalable Peer—to—peer Lookup Service for Internet
Applications. In Proc. ACM SIGCOMM 2001, San
Diego, California, August 2001. An early version
appeared as LCS TR—-819 available at
http://pdos.lcs.mit.edu/chord/#pubs.

[2] Ian Clarke, Oskar Sandberg, Brandon Wiley, and
Theodore W. Hong. Freenet: A Distributed
Anonymous Information Storage and Retrieval
System. In Proceedings of the Workshop on Design
Issues in Anonymity and Unobservability, Berkeley,
California, June 2000.
http://www.freenetproject.org/.

[3] Roger Dingledine, David Molnar, and Michael J.
Freedman. The Free Haven Project: Distributed
Anonymous Storage Service. In Proceedings of the
Workshop on Design Issues in Anonymity and
Unobservability, July 2000.
http://www.freehaven.net/papers.html.

[4] Frank Dabek, Emma Brunskill, M. Frans
Kaashoek, David Karger, Robert Morris, Ion Stoica,
and Hari Balakrishnan. Building Peer—to—Peer
Systems with Chord, a Distributed Lookup Service.
In Proceedings of the 8th Workshop on Hot Topics
in Operating Systems, May 2001.
http://pdos.lcs.mit.edu/chord/#pubs.

[5] Michael K. Reiter and Aviel D. Rubin. Crowds:
Anonymity for Web Transactions. In
Communications of the ACM 42(2), June 1999.

http://www.research.att.com/projects/crow
ds/.



